Final Exam — Group Theory (WIGT-07)

Thursday April 13, 2017, 09.00h–12.00h

University of Groningen

Instructions

- 1. Write on each page you hand in your name and student number.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. Your grade for this exam is E = (P + 10)/10, where P is the number of points for this exam.

Problem 1 (20 points)

- a) Determine all subgroups of S_3 . Which of those are normal subgroups?
- b) Let $f, g : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R} \setminus \{0, 1\}$ be the functions given by $f(x) := \frac{1}{x}$ and $g(x) := \frac{x-1}{x}$. Consider the group G generated by f and g, where the group operation is defined by composition of functions $((f \circ g)(x) := f(g(x)))$. Show: $G \cong S_3$.

Problem 2 (20 points)

Let $n \in \mathbb{Z}$ and G be a finite group such that $(xy)^n = x^n y^n$ for all $x, y \in G$. We define $G_n := \{x \in G \mid x^n = 1\}$ and $G^n := \{x^n \mid x \in G\}$.

- a) Show that G_n and G^n are normal subgroups of G.
- b) Show that $|G^n| = [G:G_n]$.

Problem 3 (15 points)

If a group G has a normal subgroup N such that both N and G/N are abelian, we call G metabelian.

- a) Let p > q be primes such that $q \nmid p-1$. Show that any group G with |G| = pq is metabelian.
- b) Show that every subgroup H of a metabelian group G is also metabelian.

Problem 4 (15 points)

Let G be a finite group and $p \neq q$ prime divisors of |G| such that there exist exactly one Sylow p-group P and one Sylow q-group Q. Show that for any $x \in P$ and $y \in Q$ we have $xyx^{-1}y^{-1} \in P \cap Q$. Conclude that xy = yx and $\operatorname{ord}(xy) = \operatorname{ord}(x)\operatorname{ord}(y)$ for any $x \in P$ and $y \in Q$.

Problem 5 (20 points)

Let $H \subset \mathbb{Z}^4$ be the group generated by the elements (3, 9, 3, 0) and (4, 2, 0, 2). Find the rank and the elementary divisors of $A := \mathbb{Z}^4/H$.

End of test (90 points)

Solutions

Solution 1 (20 points)

a) Determine all subgroups of S_3 . Which of those are normal subgroups?

Solution: We have $|S_3| = 6$. Thus, any subgroup besides the trivial ones $\{(1)\}$ and S_3 (2 pts) have order 2 or 3. This implies any non-trivial subgroup is cyclic (2 pts).

This gives that any element of order 2 corresponds to exactly one subgroup of order 2. Thus for any two cycle $(ab) \in S_3$ we have a subgroup of order 2. $(\{(1), (12)\}, \{(1), (13)\}, \{(1), (23)\})$ (2 pts).

In S_3 there are exactly two 3-cycles and any subgroup of order 3 has to include exactly 2 3-cycles. Thus there is exactly one subgroup of order 3 $\{(1), (123), (132)\}$ (2 pts).

Since conjugation fixes cycle types, the only non-trivial normal subgroup of S_3 is the group of order 3 (2 pts).

b) Let $f, g : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R} \setminus \{0, 1\}$ be the functions given by $f(x) := \frac{1}{x}$ and $g(x) := \frac{x-1}{x}$. Consider the group G generated by f and g, where the group operation is defined by composition of functions $((f \circ g)(x) := f(g(x)))$. Show: $G \cong S_3$. Solution: First possibility: Compute all possible (there are 6 of them) products of f and g (6 pts). Observe that the group is not commutative (2 pts) and conclude that it is S_3 (2 pts).

Second possibility: Observe $\operatorname{ord}(f) = 2$ and $\operatorname{ord}(g) = 3$ (4 pts). Compute $f \circ g \circ f = g^{-1}$ (2 pts) and conclude that the group generated by f and g is isomorphic to D_3 . By the fact $D_3 \cong S_3$ the assertion follows (2pts).

Third possibility: The map $f \mapsto (12), g \mapsto (123)$ is a bijective homomorphism. (Here almost the same computations as in the first solution have to be done.)

Solution 2 (20 points)

Let $n \in \mathbb{Z}$ and G be a finite group such that $(xy)^n = x^n y^n$ for all $x, y \in G$. We define $G_n := \{x \in G \mid x^n = 1\}$ and $G^n := \{x^n \mid x \in G\}$.

a) Show that G_n and G^n are normal subgroups of G. Solution: First we show G^n is a normal subgroup: By the fact $(xy)^n = x^n y^n$ this is straight forward (5 pts). Now consider the homomorphism $\varphi : G \to G^n$ given by $\varphi(x) = x^n$. We have $\ker(\varphi) = G_n$ and thus G_n is a normal subgroup of G. (5 pts) b) Show that $|G^n| = [G:G_n]$.

Solution: The homomorphism φ in part a) is in fact surjective (2pts) and thus, by the Isomorphism Theorem we have $G/G_n \cong G^n$ (4 pts). This gives $|G/G_n| = |G^n|$ (2 pts). And since $|G/G_n| = [G:G_n]$ the assertion follows (2pts).

Solution 3 (15 points)

If a group G has a normal subgroup N such that both N and G/N are abelian, we call G metabelian.

- a) Let p > q be primes such that $q \nmid p-1$. Show that any group G with |G| = pq is metabelian. Solution: By the Sylow Theorem there exists a subgroup P of order p in G (2 pt). Since p is prime, we have that P is abelian (1 pt). Further there exists n_p of those subgroups where $n_p \equiv 1 \pmod{p}$ and $n_p \mid q$ (2 pt). This gives $n_p = 1$ and thus P is normal (2 pt). Thus, the group G/P has q elements and thus is abelian (1 pt). This implies G is metabelian.
- b) Show that every subgroup H of a metabelian group G is also metabelian. Solution: Since G is metabelian we have a normal subgroup N in G that is abelian and G/N is also abelian (1 pt). For any subgroup H of G we consider now the abelian group $H \cap N \subset H$ (2 pts). By the second Isomorphism Theorem we have that $H \cap N$ is normal in H and $H/(H \cap N) \cong HN/N \subset G/N$ (2 pts). Since every subgroup of an abelian group is abelian, we have $H/(H \cap N)$ is abelian (1 pt). Thus, H is metabelian (1 pt).

Solution 4 (15 points)

Let G be a finite group and $p \neq q$ prime divisors of |G| such that there exist exactly one Sylow p-group P and one Sylow q-group Q. Show that for any $x \in P$ and $y \in Q$ we have $xyx^{-1}y^{-1} \in P \cap Q$. Conclude that xy = yx and $\operatorname{ord}(xy) = \operatorname{ord}(x)\operatorname{ord}(y)$ for any $x \in P$ and $y \in Q$.

Solution: Since P and Q have coprime order (2 pts), we have $P \cap Q = \{e\}$ (1 pt). Since P, resp. Q, is the only Sylow p-group, resp q-group, it is normal (2 pts). This gives $xyx^{-1} \in Q$ and $yx^{-1}y^{-1} \in P$ (2 pts). Thus, $xyx^{-1}y^{-1} \in P \cap Q = \{e\}$ (2 pts) and we have xy = yx (2 pts). Further gcd(ord(x), ord(y)) = 1 (1 pt) and x, y commute by the last observation (1 pt). Thus, the assertion ord(xy) = ord(x)ord(y) follows (2 pts).

Solution 5 (20 points)

Let $H \subset \mathbb{Z}^4$ be the group generated by the elements (3, 9, 3, 0) and (4, 2, 0, 2). Find the rank and the elementary divisors of $A := \mathbb{Z}^4/H$.

Solution: A straightforward computation gives that the elementry divisors are (6) and the rank is 2.