Final Exam - Group Theory (WIGT-07)

Thursday April 13, 2017, 09.00h-12.00h
University of Groningen

Instructions

1. Write on each page you hand in your name and student number.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. Your grade for this exam is $E=(P+10) / 10$, where P is the number of points for this exam.

Problem 1 (20 points)

a) Determine all subgroups of S_{3}. Which of those are normal subgroups?
b) Let $f, g: \mathbb{R} \backslash\{0,1\} \rightarrow \mathbb{R} \backslash\{0,1\}$ be the functions given by $f(x):=\frac{1}{x}$ and $g(x):=\frac{x-1}{x}$. Consider the group G generated by f and g, where the group operation is defined by composition of functions $((f \circ g)(x):=f(g(x)))$. Show: $G \cong S_{3}$.

Problem 2 (20 points)

Let $n \in \mathbb{Z}$ and G be a finite group such that $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. We define $G_{n}:=\left\{x \in G \mid x^{n}=1\right\}$ and $G^{n}:=\left\{x^{n} \mid x \in G\right\}$.
a) Show that G_{n} and G^{n} are normal subgroups of G.
b) Show that $\left|G^{n}\right|=\left[G: G_{n}\right]$.

Problem 3 (15 points)

If a group G has a normal subgroup N such that both N and G / N are abelian, we call G metabelian.
a) Let $p>q$ be primes such that $q \nmid p-1$. Show that any group G with $|G|=p q$ is metabelian.
b) Show that every subgroup H of a metabelian group G is also metabelian.

Problem 4 (15 points)

Let G be a finite group and $p \neq q$ prime divisors of $|G|$ such that there exist exactly one Sylow p-group P and one Sylow q-group Q. Show that for any $x \in P$ and $y \in Q$ we have $x y x^{-1} y^{-1} \in P \cap Q$. Conclude that $x y=y x$ and $\operatorname{ord}(x y)=\operatorname{ord}(x) \operatorname{ord}(y)$ for any $x \in P$ and $y \in Q$.

Problem 5 (20 points)

Let $H \subset \mathbb{Z}^{4}$ be the group generated by the elements (3, 9, 3, 0) and (4, 2, 0, 2). Find the rank and the elementary divisors of $A:=\mathbb{Z}^{4} / H$.

End of test (90 points)

Solutions

Solution 1 (20 points)

a) Determine all subgroups of S_{3}. Which of those are normal subgroups?

Solution: We have $\left|S_{3}\right|=6$. Thus, any subgroup besides the trivial ones $\{(1)\}$ and S_{3} (2 pts) have order 2 or 3 . This implies any non-trivial subgroup is cyclic (2 pts).

This gives that any element of order 2 corresponds to exactly one subgroup of order 2 . Thus for any two cycle $(a b) \in S_{3}$ we have a subgroup of order 2 . (\{(1), (12) $\left.\},\{(1),(13)\},\{(1),(23)\}\right)$ (2 pts).
In S_{3} there are exactly two 3-cycles and any subgroup of order 3 has to include exactly 2 3 -cycles. Thus there is exactly one subgroup of order $3\{(1),(123),(132)\}(2 \mathrm{pts})$.
Since conjugation fixes cycle types, the only non-trivial normal subgroup of S_{3} is the group of order 3 (2 pts).
b) Let $f, g: \mathbb{R} \backslash\{0,1\} \rightarrow \mathbb{R} \backslash\{0,1\}$ be the functions given by $f(x):=\frac{1}{x}$ and $g(x):=\frac{x-1}{x}$. Consider the group G generated by f and g, where the group operation is defined by composition of functions $((f \circ g)(x):=f(g(x)))$. Show: $G \cong S_{3}$.
Solution: First possibilty: Compute all possible (there are 6 of them) products of f and g (6 pts). Observe that the group is not commutative (2 pts) and conclude that it is S_{3} (2 pts).
Second possibilty: Observe $\operatorname{ord}(f)=2$ and $\operatorname{ord}(g)=3$ (4 pts). Compute $f \circ g \circ f=g^{-1}$ $(2 \mathrm{pts})$ and conclude that the group generated by f and g is isomorphic to D_{3}. By the fact $D_{3} \cong S_{3}$ the assertion follows (2pts).
Third possibilty: The map $f \mapsto(12), g \mapsto(123)$ is a bijective homomorphism. (Here almost the same computations as in the first solution have to be done.)

Solution 2 (20 points)

Let $n \in \mathbb{Z}$ and G be a finite group such that $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. We define $G_{n}:=\left\{x \in G \mid x^{n}=1\right\}$ and $G^{n}:=\left\{x^{n} \mid x \in G\right\}$.
a) Show that G_{n} and G^{n} are normal subgroups of G.

Solution: First we show G^{n} is a normal subgroup: By the fact $(x y)^{n}=x^{n} y^{n}$ this is straight forward (5 pts). Now consider the homomorphism $\varphi: G \rightarrow G^{n}$ given by $\varphi(x)=x^{n}$. We have $\operatorname{ker}(\varphi)=G_{n}$ and thus G_{n} is a normal subgroup of G. (5 pts)
b) Show that $\left|G^{n}\right|=\left[G: G_{n}\right]$.

Solution: The homomorphism φ in part a) is in fact surjective (2 pts) and thus, by the Isomorphism Theorem we have $G / G_{n} \cong G^{n}$ (4 pts). This gives $\left|G / G_{n}\right|=\left|G^{n}\right|(2 \mathrm{pts})$. And since $\left|G / G_{n}\right|=\left[G: G_{n}\right]$ the assertion follows (2pts).

Solution 3 (15 points)

If a group G has a normal subgroup N such that both N and G / N are abelian, we call G metabelian.
a) Let $p>q$ be primes such that $q \nmid p-1$. Show that any group G with $|G|=p q$ is metabelian. Solution: By the Sylow Theorem there exists a subgroup P of order p in $G(2 \mathrm{pt})$. Since p is prime, we have that P is abelian (1 pt). Further there exists n_{p} of those subgroups where $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid q(2 \mathrm{pt})$. This gives $n_{p}=1$ and thus P is normal $(2 \mathrm{pt})$. Thus, the group G / P has q elements and thus is abelian (1 pt). This implies G is metabelian.
b) Show that every subgroup H of a metabelian group G is also metabelian.

Solution: Since G is metabelian we have a normal subgroup N in G that is abelian and G / N is also abelian (1 pt). For any subgroup H of G we consider now the abelian group $H \cap N \subset H$ (2 pts). By the second Isomorphism Theorem we have that $H \cap N$ is normal in H and $H /(H \cap N) \cong H N / N \subset G / N(2$ pts $)$. Since every subgroup of an abelian group is abelian, we have $H /(H \cap N)$ is abelian (1 pt). Thus, H is metabelian (1 pt).

Solution 4 (15 points)

Let G be a finite group and $p \neq q$ prime divisors of $|G|$ such that there exist exactly one Sylow p-group P and one Sylow q-group Q. Show that for any $x \in P$ and $y \in Q$ we have $x y x^{-1} y^{-1} \in P \cap Q$. Conclude that $x y=y x$ and $\operatorname{ord}(x y)=\operatorname{ord}(x) \operatorname{ord}(y)$ for any $x \in P$ and $y \in Q$.
Solution: Since P and Q have coprime order (2 pts), we have $P \cap Q=\{e\}$ (1 pt). Since P, resp. Q, is the only Sylow p-group, resp q-group, it is normal (2 pts). This gives $x y x^{-1} \in Q$ and $y x^{-1} y^{-1} \in P(2 \mathrm{pts})$. Thus, $x y x^{-1} y^{-1} \in P \cap Q=\{e\}(2 \mathrm{pts})$ and we have $x y=y x(2 \mathrm{pts})$. Further $\operatorname{gcd}(\operatorname{ord}(x), \operatorname{ord}(y))=1(1 \mathrm{pt})$ and x, y commute by the last observation (1 pt). Thus, the assertion ord $(x y)=\operatorname{ord}(x) \operatorname{ord}(y)$ follows (2 pts).

Solution 5 (20 points)

Let $H \subset \mathbb{Z}^{4}$ be the group generated by the elements $(3,9,3,0)$ and (4, 2, 0, 2). Find the rank and the elementary divisors of $A:=\mathbb{Z}^{4} / H$.
Solution: A straightforward computation gives that the elementry divisors are (6) and the rank is 2 .

